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Summary. Data on a genetic marker linked to a gene 
affecting an important trait could help us to estimate 
breeding values for that trait more accurately. The accu- 
racy is enhanced if many genetic markers are used and if 
important genes are bracketed by two markers. A mixed 
model for analysis of this type of data is presented. The 
model is appropriate for an arbitrary pedigree structure 
in an outbreeding species. It uses a "relationship" matrix 
among marked chromosome segments or QTL alleles. By 
using an analysis analogous to a reduced animal model, 
the number of effects to be estimated can be greatly re- 
duced. A grouping strategy that can account for cross- 
breeding and linkage disequilibrium between markers 
and QTL alleles is included in the model. For analyses of 
a cross between inbred lines the model can be simplified. 
This simplification shows clearly the relationship of the 
mixed model analyses to multiple regression models used 
previously. The simplified model may also be useful for 
some experiments in outbreeding populations. 
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Introduction 

If we could identify a genetic marker closely linked to a 
gene affecting an important character, it would allow us 
to select more accurately for that character. The possible 
advantages of this marker assisted selection (MAS) have 
been examined by Soller and Beckman (1983) and Smith 
and Simpson (1986). However, a single random marker is 
unlikely to be closely linked to a particular important 
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gene. To make systematic use of MAS we will need to 
examine many markers so that any important gene will 
be closely linked to at least one marker. 

Fortunately, recombinant DNA techniques are now 
providing a potentially unlimited number of markers. 
Consequently, MAS is already being used in plant im- 
provement (Nienhuis and Helentjaris 1989) and experi- 
ments are commencing in animals. 

Three broad methods of analysis for data on genetic 
markers and quantitative traits have been proposed. 

1. Multiple regression models with one term for each 
marker. 

2. Maximum likelihood. 
3. Mixed model or best linear unbiased prediction 

(BLUP) (Fernando and Grossman 1989). 

When multiple regression or least squares is used, the 
predicted breeding value of the best animals is over esti- 
mated. Smith and Simpson (1986) pointed this out in the 
context of MAS. Maximum likelihood methods that treat 
the effects to be estimated as fixed effects will also have 
this disadvantage. In addition, they tend to be difficult to 
compute for general data structures, i.e., other than nucle- 
ar human families and inbred line crosses. 

For data that does not contain markers, BLUP has 
proven to be a very flexible method and one that does not 
overestimate the merit of the animals with highest esti- 
mated breeding value. BLUP can handle data with many 
nongenetic effects (e.g., herd), with arbitrary pedigree 
structure, and with nonrandom mating and selection. For 
these reasons it is also likely to be useful for analyzing 
data containing information on genetic markers, if the 
assumptions of BLUP are reasonably satisfied. 

Fernando and Grossman (1989) demonstrated how 
this could be done for data on a single marker locus. 
However, in practice we are likely to generate data with 



many linked marker loci. Ideally, we would hope that 
important genes for quantitative traits were bracketed 
between two markers. The first aim of the current paper 
is to extend the model of Fernando and Grossman to deal 
with this situation. 

One important use of MAS is the introgression of 
genes from a resources population into a commercial line 
(Soller and Beckman 1983). This implies crossbreeding. 
Recently, Lande and Thompson (1990) have proposed 
that linkage disequilibrium between important genes and 
markers could be of significant value in MAS. The mixed 
model proposed in this paper accommodates crossbreed- 
ing and linkage disequilibrium. 

In the case of a cross between inbred lines the model 
can be simplified. The simplified version of the model 
shows the relationship of the BLUP model to multiple 
regression approaches. The simplified model may be use- 
ful with non-inbred animals in some circumstances and 
this point is considered in the Discussion. 

Basic model 

The development of the model parallels that of Fernando 
and Grossman (1989) and uses similar notation. 

Consider a chromosome with a series of marked loci 

M1 M2 M3 Ms Ms 

I I I [ I 
I will assume that there is at most one quantitative trait 
locus (QTL) between each pair of markers 

Ma Qa Mj + 1 

I I I 
At the locus Qj each animal has two alleles, one inher- 

ited from its sire and one from its dam. Associated with 
each QTL allele is a marker haplotype consisting of the 
marker alleles at Mj and M j+l. If the jth chromosome 
segment that animal i inherited from its sire is of marker 
haplotype (kl), denote the value of the QTL allele on that 
segment by v~j (go or simply as v~j(p). Similarly, the allele 
from its dam is v~j(m ) . Then the breeding value of animal 
i(ai) summed over all chromosome segments is 

a~ = E %(p) + E %(.o + u~, (1) 
J J 
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where ui=breeding value at QTLs not included in 
marked segments. 

The usual BLUP model for the phenotypic value of 
animal i (Yi) is 

Yi = X~ f + ai + ei, (2) 

where 

f = a vector of fixed effects, 
x~ = an incidence vector, 
e~ = environment deviation. 

(Symbols for vectors are in bold and for matrices in up- 
percase bold.) On substituting Eq. 1 into Eq. 2 this be- 
comes 

Yi = x; f + Y~ vl; (p) + ~, vij (,.) + u i + e i (3) 
J J 

or using matrix notation and assuming one record per 
animal 

y = X f  +Y~ Z j  V s + u + e ,  (3a) 
J 

where the vector vj contains two unknowns for each 
animal for each locus (one paternal and one maternal 
QTL effect) 

the matrix Z~ has rows that contain two l's and are 
otherwise zero; summation is over QTL loci (= chromo- 
some segments bounded by markers) 

To form the BLUP equations we require the covari- 
ance matrices of the u's and of the v's. 

var(u)=Aa 2 , 

where 

A = numerator relationship matrix, 

0 .2 = variance of breeding value not associated with 
marked chromosome segments. 

The variance of v is block diagonal, with each block 
corresponding to one QTL provided the base population 
is in linkage equilibrium. Similarly, the covariance of u 
and v is zero if the base population is in linkage equilib- 
rium. 

var (e) = I ~ e 

The BLUP equations are 

X'xX X '  X '  Z 1 X ' Z  2 ... 
I + A - 1 2  Z a Z 2 . . .  

I Z'I X Z'~ Z,1Z 1 + G ~ , 6 -2  Z,, Z 2 ... 

k Z~2X Zr2 Z ' 2 Z  1 Z t 2 Z 2 + G 2 1 ~  - 2  . . .  

f X ' y  

~1 Z~ y 

~2 Zh y 

(4) 
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where 
~2 

k =  

Gj = var (/)~) 

the number of v vectors, Z and G matrices is equal to the 
number of marked QTL with Eq. 4 logically extended. Zj 
refers to t h e j  th marked QTL as in Eq. 3a. 

A derivation of G i- 1 is given in the next section. 

T h e  var  (v)  m a t r i x  a n d  G - 1  

Consider a single QTL bracketed by two marker loci with 
map distances as follows 

M 1 Q M2 

pr qr ( p + q = l )  

r 

Assuming no interference between crossovers, the recom- 
bination rates are (Haldane 1919) between 

M 1 and M 2 a = 0 . 5 ( 1 - e  -2~) 

M 1 Q b = 0 . 5 ( 1 - 3  -2p~) 

Q M2 C=0.5(l--e-2qr)  . 

The relationships between the /)'s determine var(v), 
just as the relationships between animals determine A. 
The "parents" of the allele v~j (p) are the two alleles at that 
locus in the sire of i. Similarity,/)ijtm) is derived from the 
two alMes in the dam. Without loss of generality the sires' 
genotypes can be writen as 

1 v~l 1 1 

I I I 
2 /)s22 2 

Based on marker haplotypes, he will produce four types 
of gamete 

1 /)oll 1 1 /)o12 2 2 /)o21 1 2 /)022 2 
I I I I I I I I I I I I 

The frequency and means of these four types of gamete 
are given in Table 1. 

The approximate means are those obtained assuming 
no double recombinations between the markers. For  the 
(1 1) and (2 2) haplotypes, the maximum error in the ap- 
proximations can be shown to occur at p = q = Y~, where 
the true means are 

- -  r 2  

Table 1. Frequencies and means of marker haplotypes 

Haplo- Frequency Mean Approximate 
type mean 

bc 1 1 �89 ( l - b ) ( 1 - C ) v s l l + ~ _ a V S 2 2  v~11 
1--a 

(1-b)c v + b(1-c) v 1 2 �89 a ~11 a s22 qvm+pv~22 

2 1 �89 b ( 1 - c ) v ~ l l + ( l a  b)c 
a - - v s 2 2  PVsll+qVs22 

bc , ~- (1 -b )  (l -c )  
2 2 �89 ~ s l l - -  l - -a  /)s22 /)s22 

where 0(x) is a function such that 0(x) approaches zero as x 
x approaches zero. 

For  the (1 2) and (2 1) haplotypes, the maximum error 
in the approximate means can be shown to occur at ' 4  p = ~ _+ , where the means are 

l 
F +OIr ,l. +Ip_+;o+OIr  l (2 1) kq + ~ /),22 �9 

Thus, the value of the QTL in each gamete can be 
written in terms of the parental QTLs. For  one represen- 
tative of each haplotype and using the approximate 
means, these are 

/)o21 / V2,/ 
Vo2~/ \ 6 ~ /  

(5) 

The et~ are the deviation of each gamete from the mean 
of the haplotype. With the approximate mean 611 
= 6 2 2 = 0  because rot 1 is identical to v~11 and Vo22 is 
identical to vs22. 

Following Fernando and Grossman (1989) and Quaas 
(1988) this method of writing QTL effects in terms of 
parental QTL alleles can be generalized for all QTL alle- 
les in the data. That is, 

v = P v + e ,  (6) 

where P is a matrix similar to that in Eq. 5 and each row 
contains at most two nonzero terms which sum to 1. 
Thus, 

( I -  P )  v = r 

v = ( I - P ) -  1 

G = Var (v) = (I - P ) -  1 var (e) (I - P)' - 1 

This allows us to find the inverse of G 

G -  1 = [Var (v)] - 1 = (I - P)' [var (e)] - 1 (I - P) 
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var(~) is diagonal as shown in Appendix I and P is of 
simple structure, so that rules for G - 1  can be derived in 
a similar way to that of Fernando and Grossman (1989). 
The rules are: 

(1) Replace Vol 1 with vsl 1 in all equations and delete 
rows and column of G -  1 corresponding to Vol 1. Sim- 
ilarly, replace Vo22 with v~2 z. 

(2) For  an offspring allele Vol 2 

Add to Element of G -  1 

l - p  
2p 

P 
2(1 - p )  

1 
2p(1 - p )  

- 1  
2p 

- 1  
2(1 - p )  

1 
($11, $22) and ($22, Sl l )  

(3) For  an offspring allele roe 1 replace p with q and 012 
and 021 in the above rules 

(4) For  an allele V,ll without known parents add 1 to 
element ($11, $11) 

The main practical disadvantage of the approximation 
used for P is that, if double crossover does occur, b,11 and 
~oll are forced to be identical no matter how much evi- 
dence there is to the contrary. Therefore, it might be 
desirable to use a correlation sligthly less than 1 between 
v,11 and Vol ~. To do this, use 

?)011 = 1 - -  V s l l J r - ~ V s 2 2 q - g i l  . 

(Sll ,  $12) 

($22, $22) 

(012, 012) 

(Sll ,  012) and (012, Sl l )  

($22, 012) and (012, $22) 

If this is adopted, row and columns for Vol , are re- 
tained in G -1 and, in the rules given above, 012 is re- 
placed by 011 and p is replaced by re/,,. 

Reduced animal model (RAM) 

The Eqs. 4 are for a full animal model. If there are n QTL 
loci, there are 2 n ~) effects and one t~ effect to be estimated 
for every animal. The number of effects to be estimated 
could be greatly reduced by use of a reduced animal 
model (Quaas and Pollock 1980). In a RAM, the breeding 
values of animals that are not parents are expressed in 
terms of their parents'  breeding value. That procedure is 
now applied to QTL effects; that is, v effects are expressed 
in terms of their parental alleles just as they were in the 
derivation of G-1.  The model for data on animals that 

are not parents becomes 

y = X f  +u+ Z (e* v j+e j )+e  (7) 
J 

= X f  +u+ Z P* vj+e* , 

where e* = ~ ej + e 

P* = rows of Pj corresponding to animal that are not 
parents. The BLUP equations now contain t~ terms only 
for animals that are parents. 

Since the most efficient designs for estimating QTL 
effects involve a large number of offspring per sire, this 
should represent a substantial saving. A more detailed 
derivation of RAM for the original Fernando and Gross- 
man (1989) model is given by Cantet and Smith (1991). 

An example 

As an illustration of the methods described above, con- 
sider the simple pedigree in Fig. 1. Genotypes at two 
linked marker loci are also given and these can be used 
to define alleles at a QTL located between the markers. It 
will be assumed that there are no double crossovers 
(%11 = v s l J  and for simplicity of presentation, fixed ef- 
fects and genetic effects at other QTLs will be ignored. 
For  this example, Eq. 3 a becomes 

y = Z v + e  

i.e., 
Vsl 1 

Yd = 0 1 1 = va33 + e d 

Yo 0 0 0 re4 4 \ e o ]  

/5034 

sire 
1 Vsl 1 i 

I I I 

1 I I 
2 Vs= 2 

dam 

vd33 3 

I I 

I I 
v~4 4 4 

offspring 
1 vol I 1 

I 1 I 
3 %34 4 

Fig. 1. Haplotypes of animals in a simple pedigree 
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The relationship matrix among the v is 

G=var(v) 

1 0 0 0  0 
1 0 0 0  

= 1 0  q 0-2 o 
symmetric 1 p 

1 

Using the rules for inverting G gives 

G-l=  

0 0 

1 0 
q 

l + 2 p  

0 

0 
1 

P 1+ 
2q 

symmetric 

2 p q /  

2 G - 1  For the reduced v* vector G=var (v*)=I  o-v, 
10-~- 2 but now 

0-2 0 0 ) 
R = var (e*) = 0 0-2 0 

0 0 0-2+2pqa 2 

and R-  1 = 1 

0 

0--2 

where 8 = ( 1 + 2 p q 2 - 1 )  -1 

2 + 2 p q  

The mixed model equations 
(Z' R -1 Z + G  -1) v=Z'  R - l y  i.e., 

1 1+8+21 1+41 q~ 

q~ 1+q2~+2 

p~ l + p @  

for the 

~)s22 : 
1 +p@ ~d33 

1 +p2~+2  A \/~d44 

RAM are 

ys + 8yo 

Ys 

Yd + @Yo 

Ye + P~Yo 

The mixed model Eqs. 4 become 

2+4  1 

1 1+4 

1 

1 \ [ /)sll 

-2-? 

1+1-2 1+ 1+ 2 
2 2q / \ V o 3 4  

1 1 2  1 1 
2p - 2 q  + 2 ~  2 

0-2 
where 2 = -~.  0-v 

In the RAM, Vo34 is replaced q Vd33 + p Vd44 + e SO that 
the model becomes 

o o  /vs22/ es 
Ya = 01 /Vd33 / "q- ed 
Yo 0 q \vd44 ] e~ 

i.e., y = Z *  v*+e*.  

Y~ + Yo 

Ys 

Yd 

Yd 

Yo 

(8) 

If in Eq. 8 for the full model, the ~3o34 term is elimi- 
nated by absorbing the last row and column, the resulting 
equations are the same as those obtained above for the 
RAM. This is an example of the general rule that the full 
animal model and the RAM yield the same results. 

Crossbreeding and linkage disequilibrium 

So far we have assumed that the only relationships 
among the v effects are those due to the relationships 



between animals included in the data. Two other causes 
of covariance are likely to occur. 

(1) If there is linkage disequilibrium between markers 
and QTLs, all QTL alleles in the population bracket- 
ed by the same marker haplotype will be similar. 

(2) QTL alleles that derive from the same breed will also 
be similar to the extent that breeds differ in mean 
value. 

These effects can be incorporated into the model by 
including the equivalent of group effects. That is, 

l)ij (kl) : b + Lj  -k hj (kl) ~- dij (kt) , 

where 

b = a breed effect common to all QTL alleles derived 
from that breed, 

Lj = a breed effect common to all QTL alleles at the j  th 
locus derived from that breed, 

hick1 ) = an effect common to all QTL alleles at the j  th locus 
that are contained in the kl marker haplotype. 

The most useful grouping structure is probably that 
proposed by Thompson (1979), Quaas and Pollock 
(1981), Robinson (1986), and Westell et al. (1988). Applied 
to this case, the breed effect for a particular QTL allele is 
a combination of the breed effects of its parents. 

E.g.: 

bo12 =qbsll  q-pbs22 , 

where the subscripts denote animals as in previous sec- 
tions. 

This is equivalent to grouping the foundation alleles 
that do not have parents in the data (Westell et al. 1988). 
That is, for foundation alleles 

Vij  (kl) = b + Lj + hj (kZ) + e. 

The P matrix used in Eq. 6 is augmented to reflect this so 
that 

i.e., w = P  + w + e  +, 

where 

(;i (!) 
0 ' =  a row vector of zeros. 
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The inverse of var (w) is derived as before from 

(I - P +)' [var (e +)] - 1 (I - P +). 

The rules for forming [var(w)]-1 are the same as previ- 
ously described, except now for each foundation allele 
additions are made to the rows and columns representing 
groups. The group effects can be treated either as fixed or 
random by assigning the appropriate variances in 
var(e+). The B L U P  equations are expanded to contain 
rows and columns for b, I, and h by adding zero columns 
to Z'  i (Westell et al. 1988). 

In the derivation of the B L U P  Eqs. 4 it was assumed 
that there was linkage equilibrium between the QTL. In 
this section, linkage disequilibrium between a QTL and 
its bracketing marker loci has been allowed for, but dis- 
equilibrium among the QTL themselves has not been 
dealt with. This should not be a major deficiency because, 
unless the QTL are tightly linked, they are not likely to 
display disequilibrium. An exception to this generaliza- 
tion is a population derived from crossing breeds or lines 
in which the QTL alleles from one breed are generally 
superior to those from the other. The b and L group 
affects help to overcome this problem, because then the d 
effects are deviations from the breed mean and so their 
correlation between loci will be reduced. 

A simplification for inbred lines 

The model describd above can be applied to any pedigree 
structure in an outbreeding population which can include 
crossbreeding. For  a cross between inbred lines the model 
can be considerably simplified. 

Consider a cross between inbred lines to produce an 
F~ that is backcrossed to one of the parent lines. For  data 
on the backcross generation, Eq. 3 a becomes 

y = X f  +32Zj  v j + u + e .  
J 

Only one Zj vj term is needed per locus because the 
gametes from the other parent are all identical. 

The equivalent RAM is 

y = X f  +Y~ Pj vj+(u+Y~ ej+e),  
J J 

where rows of PJ are as given in Eq. 5. vj now contains 
only the two alleles per locus from the inbred parents. 
Only the difference between these alleles is estimable, so 
we can replace 

Vjs l l  by M j - - v j  

vjs22 by Mj+vj .  

The Mj get absorbed into the overall mean which is part 
of Xf.  
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Considering only one QTL, the model becomes 

y = X  f + P v + e * ,  (9) 

where e * = u + e + e .  
Writing one example of each haplotype and assuming 

no double crossovers, this is (Yii--1 ) 
Y12 = X f  + - ( 1 - 2 p )  v+e* 
Y21 (1 --2p)  

Y22 -{- 1 
Mixed model equations derived from Eq. 9 require 

that p be known. In the equivalent full model, p appears 
only in the G -  1 matrix. It would be logical to estimate p 
using REML,  then use the estimate in Eq. 9. 

Alternatively Eq. 9 ean be written as 

Y12 = X f +  0 - /) + e *  (10a) 
Y2i 0 ( 1 - 2 p )  v 

Y22 1 
= X f  +ZO+e* (10b) 

For  each locus there is only one /) and one p to be 
estimated, so we can treat ( 1 - 2 p ) / )  as a single random 
variable. Assuming that v is normally distributed with 
mean 0 and variance 0 -2 and that  p is uniformly distribut- 
ed from 0 to 1, 

var(O) = var ( ( l - ; p ) v )  

__ o ) .  
1/3 0- ' '  

as shown in Appendix 2. 
Mixed model equations based on Eq. 10 can now be 

setup without prior estimation of p. 
A second equivalent model is y x) ) 

Yi2 -=Xf+ --1 1 ( l - -p) / )  
Y21 1 - 1  pv + e *  ( l l a )  

Y22 1 1 

= X f + Z  z 0 2 + e *  . (11b) 

As 02 is a linear t ransformation of 0 

var(O~) = var ((1--P)pv v~./ 

\1/6 1/3/0-~" ( l l c )  

For  each marker  locus, Z2 contains - 1 when marker  
allele 1 is present and + 1 when allele 2 is present. 

Therefore Eq. 11 a, b, c is simply a model for regression 
on the markers with the regression coefficients (02) treat- 
ed as random effects with a certain covariance structure. 

Now consider five linked markers 

M1 Q1 M2 Q2 Ma Q3 M4 Q~ M5 
I I I I b I I I I 

1 - v  1 I - v  2 1 - v  a 1 -v4  l p a r e n t l  genotype 
2 v i 2 v 2 2 v 3 2 v 4 2 p a r e n t 2  genotype 

The statistical model 11 can be expanded to 

y = X f + Z 3  03 + e * ,  (12) 

where 

0; ~---(ql Vl Pl /)l q2/)2 P2/)2 q3/)3 P3/)3 q4/)4 P4/)4) 
qi = 1 --Pl �9 

var(03) is block diagonal with each block as Eq. 11 c. 
The model appears overparameterized, as it is a re- 

gression model with five variables (=  markers) but eight 
unknowns. However, because the 0~ are random vari- 
ables, solutions are still possible. 

Consider the row of z for the i th animal denoted by z' i 
with marker  haplotype 

1 1 2 2 1 

- 1  - 1  - 1  1 1 1 1 - 1  

z'~ contains two identical elements for each of the second, 
third, and fourth markers. 

Consequently the model can be collapsed to 

y = X f  +Z 4 04+e, (13) 

where 

ql/)l t 
0~= PiVl+q2/)2 I 

P2 v2 + q3/)3| / 
P404 ] 

Jl/3 1/6 

1/6 2/3 1/6 

var(04)= 1/6 2/3 1/6 

1/6 2/3 1/6 

1/6 1/3 

This is now a multiple regression on the markers  except 
that  marker  effects are treated as random. It  requires that 
we know the order of markers  along the chromosome so 
that var (04) can be specified correctly. If this order were 
unknown, the approximation 

var(04)=I0-~ could be used. 

If instead, we treat the 04 as fixed effects, we have the 
standard multiple regression model. 



885 

Discussion 

The basic model proposed here is very similar to that of 
Fernando and Grossman (1989). Even the rules for in- 
verting G look similar to their rules, although p (position 
of QTL within marker bracket) in this paper has a quite 
different meaning to d (recombination rate between QTL 
and marker) in theirs. However, a major advance in accu- 
racy of estimating breeding values is achieved by having 
markers bracketing a QTL. This is seen in the G matrix 
by the near identity of QTL effects in parent and offspring 
if they share the same marker haplotype. Consequently, 
information on the value of chromosome segments does 
not erode so quickly from one generation to the next. 
This is important since large amounts of data are needed 
to estimate these effects with any precision. 

The grouping strategy suggested is by no means the 
only one available, but it illustrates how biological phe- 
nomena can be represented in the statistical model. Beck- 
man and Soller (1988) discussed the identification of 
QTL's in a cross between non-inbred lines. They assumed 
that the lines were fixed for alternate alleles at the QTL, 
possibly as a result of past selection. Under these condi- 
tions, the cross of outbred lines was almost as efficient as 
an inbred lines cross in estimating QTL effects (Beckman 
and Soller 1988). In the model proposed here, this situa- 
tion is represented by the Lj term, which groups the alle- 
les at the j,h locus that are derived from one breed. If 
breeds are fixed at the QTL, deviations from Lj (dlj(kO) 
would be set to zero. The L i effect could be treated as 
fixed, but it is probably better to treat them as random 
if a number of Lj effects must be estimated. If Lj is 
treated as random, the b effects should be included in the 
model. 

MAS is useful in introgressing a few desirable genes 
from a resource strain into a commercial line (Soller and 
Beckman 1983). It helps to retain the few desired genes 
and to recover the commercial genotype at all other loci. 
The b group effect is important in achieving the latter. It 
groups all chromosome segments derived from the same 
breed. If only b was included in the model of breeding 
value, the effect would be to rank animals on the propor- 
tion of the genome derived from each breed. That is, 
animals with the largest number of chromosome seg- 
ments from the superior breed would be given the highest 
estimated breeding value. By including Lj and dij (k~) in the 
model, this simple estimate is modified as detailed data 
on loci (Lj) and individual alleles (dij(,o) accumulate. 

Animals that carry the same marker haplotype are 
likely to be related and therefore to carry the same QTL 
allele. If the relationship is included in the data, this will 
be reflected in the G matrix. However, the relationship 
may have occurred before the base generation of the data 
set. The h(ko grouping term recognizes this. The linkage 

disequilibrium that it implies may be the result of previ- 
ous crossbreding (Lande and Thompson 1990) or simply 
of finite population size. 

The mixed model equations require estimates of the 
z for each locus. A terms in the G matrix i.e., p and a~ 

Baysian approach, which starts with prior estimates and 
modifies them in the light of new information, seems 
appropriate. As a priori, one might assume that the total 
genetic variance (ao 2) is divided equally among the QTLs. 
Then, if there were 150 marker brackets 2a  2 would be 

z is very small and ~ estimates will be a 2/150. Thus crv 
regressed back considerably unless the amount of data on 
which they are based is large. This is not a deficiency of 
the BLUP analysis but a recognition that the effects at 
the "average" QTL must be small. However, it is proba- 

2 bly important to allow av to vary between loci, so that 
genuinely major loci can be recognized and treated ac- 
cordingly (M. Goddard, W. Zhang, C. Smith, in prepara- 
tion). 

z the basic model requires As well as estimates of a v , 
estimates of p for each QTL. The simplified model for 
inbred line crosses avoids this problems by incorporating 
p into the random effect to be estimated. This would 
cause the O = (1 - 2  p) v effects not to be normally distrib- 
uted, but this is unlikely to cause a serious problem. It is 
only strictly valid if there is only one O effect to be 
estimated for each p, as is the case in a cross of inbred 
lines. This is also the case for an experiment in an out- 
breeding species consisting of a large number of half-sib 
offspring from one sire. In this case, the sire is like the F1 
parent of a backcross and the variation in breeding value 
coming from the dams becomes part of the error vari- 
ance. However, in a more complex pedigree structure 
there will be one effect (vj) for each allele at the locus, but 
the same p will apply to all of them. Consequently, treat- 
ing each ( l -  2p)v i as an independent random variable 
would lose some information. However, the loss may not 
be great. For instance, consider an experiment in which 
a large number of half-sib offspring are produced from 
each of three sires. Model 13 could be applied to each 
sire's offspring. The error term (e *) now includes the effect 
of QTL alleles inherited from the dams. 

The simplified models shows clearly the relationship 
of the BLUP analysis to multiple regression. In this case 
the only difference is treating the QTL effects associated 
with markers as random variables. This avoids the ten- 
dency of multiple regression to exaggerate the merit of 
the best animals. Also because the G -  1 matrix is not 
proportional to the Z ' Z  matrix, BLUP does not regress 
all regression coefficients equally. Consequently, the 
BLUP analysis ranks animals in a different order to the 
multiple regression analysis. In more complex data struc- 
ture, the advantage of the BLUP analysis would be 
greater as it accounts for relationships, selection, and 
varying amounts of information on different QTL alleles. 
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The derivat ion of BLUP does not  require that  the 
random effects in the model  be normal ly  distributed. 
However,  some desirable propert ies  of BLUP do require 
normality.  The distr ibution of v in Eq. 3 a is not  expected 
to be normal ly  distributed. G o d d a r d  et al. (1991), using 
computer  simulation, found that  marked departure  from 
normali ty  in the distr ibution of QTL effect did not  de- 
crease the accuracy of estimated breeding value and that  
BLUP performed better than multiple regression. 

A full maximum likel ihood analysis would use these 
departure  from normal i ty  and should therefore be more 
accurate, provided it also treated the v's as random ef- 
fects. However, the gain in accuracy may  be small and the 
flexibility and generality of the B L U P  approach  should 
make it useful. The B L U P  approach  presented here can 
cope with any pedigree structure including crossbreeding 
in an outbreeding species. This prevents severe computa-  
t ional problems for a maximum likelihood analysis (Fer- 
nando 1990). 

Appendix 1: Proof that var(0 is diagonal 

Assume that the QTL alleles in a parent s have value vsl 1 and 
v,22 . The value of the QTL allele inherited from this parent by 
offspring 0 is 

S vsl 1 with probability 0 (A1) 
vo kl = [ Vs22 with probability 1 - 0 " 

For instance, if v o k~ = Vo 12, then using the approximate means in 
Table 1, 0 = q. 

In Eq. 5 this is expressed as a linear model 

l )Okl=O Us11 +(1- -~)  Us2 2 + •Okl " (A2) 

Combining (A1) and (A2) the distribution of e0k z is 

{( 1-~)  (v,11-vs22) with probability 0 
% kl = (A3) 

O(vs22-v,l~) with probability 1 - 0  

Each gamete that is formed receives randomly and independent- 
ly one of the parents QTL alleles, and so each ~ is an independent 
realization from the distribution given by Eq. A3. Since each 
realization of e is independent, they must be uncorrelated and so 
var(e) is diagonal. 

Appendix 2: Derivation of var (0) 

Assume v is normally distributed with mean 0 and variance a~, 
p is uniformly distributed from 0 to 1 and hence has mean 1/2 
and variance 1/12, v and p are independent. 

Then var [(1-2p) v] = E ( 1 - 2 p )  2 v 2 - [ E ( 1 - 2 p )  v] 2 
=E(I  --2p) z g(v2)--[E(1-2p) E(v)] 2 
=E(1 --4p+4p z) E(v2)--0 
_ _  4 4 2 -(1-~+9~ 
__1 2 
--~- o" v . 

Similarly, 

cov [(1-2p) v, v] = E(1-2p)  vZ-E(1-2p) v E(v) 
= E ( 1 - 2 p )  E(v2)-O 
-~0. 
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